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Acute ischemic stroke (AIS): Treatment window of 4.5-6 hours.

Extracellular vesicles (EVs) from Remote ischemic conditioning (RIC)
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Model: HBMECs exposed to oxygen-glucose deprivation (OGD) to Remote ischemic  Plasma Purification miR-182-5p
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OGD-RIC-miRNAs targets neuronal degradation and cell cycle processes RIC-miRNAs effect in I/R injury /n vitro
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