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Basic physics Magnetic resonance imaging (MRI) is based on nuclear magnetic resonance (NMR)
which exploits how the magnetic moments of nuclei can be manipulated by magnetic fields. Firstly,
nuclear magnetic spins in tissue are polarised by a static magnetic field. Secondly, oscillating
magnetic field pulses at radio frequency are applied in a plane perpendicular to the static magnetic
field. This perturbes the equilibrium distribution. After the pulse is turned off, the protons will
relax back to thermal equilibrium, and during this process, they emit energy that can be detected
by coils around the patient.

The proton has spin S = 1/2 and a magnetic moment of µ = γS, where S is the spin operator. The
gyromagnetic constant γ , depends on the nucleus: the water proton 1H, which is the main nucleus
of MRI, γ ≃ 2.675 × 108radT−1 s−1. In the absence of a magnetic field, the two quantum states
corresponding to ms = ±1/2 are equally populated, and the net magnetization density M

M =
1
V

N∑
i

µi , (1)

where V is volume, is 0 (its expectation value). When a magnetic field B0 along the z-axis is
applied there is an interaction energy given by

U = −µ ·B0 = −γSzB0. (2)

In MRI, a static magnetic field B0 is generated by a superconducting magnet, and for human MRI
typically has values of 1.5T or 3T – up to 120,000 times the Earth’s magnetic field. Thus, the two
states have different energies and will be populated with different probabilities – the spin system
is polarised. The corresponding equilibrium magnetization is M = M0ẑ, where

M0 = ρ
S(S + 1)γ2

ℏ
2B0

3kBT
(3)

and ρ is the spin density. The energy difference between the two states is given by

∆E = 2µB = ℏω0, (4)

where ω0 = γB0 is the Larmor frequency and ℏ is Planck’s reduced constant. This is illustrated
in Fig. 1. The energy difference is very small (1 − exp(−∆E/kBT ) ∼ 10−6) and although there is
a net magnetisation along the z-axis, the total magnetisation M0 is not measured directly. If M
acquires a component in the plane orthogonal to B0, also called the transverse magnetization, it
will oscillate and can be measured by the current generated by induction.
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Equation of Motion To see how to generate a transverse magnetization, we need to consider the
dynamics of the magnetization. Classically, a magnetic dipole in a magnetic field feels a torque
given by

τ = µ×B0 (5)

= γS×B0, (6)

where γ is the gyromagnetic ratio and S is the (spin) angular momentum. Since dS/dt = τ we have

dµ
dt

= γµ×B0. (7)

Thus the change in the magnetic moment dµ is perpendicular to µ implying that the length of
the magnetic moment is conserved, and the dynamics must be some kind of rotation. dµ is also
perpendicular to B0, and the resulting rotational motion of µ around B0 is called precession and is
illustrated in Fig. 1. To find the precession frequency, we consider the magnitude of the change∣∣∣dµ∣∣∣ during a small time interval dt∣∣∣dµ∣∣∣ = µsinθdφ (from Fig. 1)

= |γµ×B0| = γµB0 sinθdt,

which (after considering the sign) means

dφ

dt
= −γB0 ≡ −ω0. (8)

For a collection of non-interacting spins, the magnetization M obeys the same equation as µ (Eq. 7),
which holds in general for an arbitrary time-dependent magnetic field, B0→ B(t). Further, since
quantum mechanical expectation values obey the classical laws, we thus have

dM
dt

= γM×B. (9)

B

ω = γB

µ

θ

m = 1/2

m = −1/2

∆E = ℏω

Figure 1: Left: the two states. Right: The magnetic moment, µ precesses around the external
magnetic field, B
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Figure 2: Dephasing of the transverse magnetization related to T2. The red arrows are individual
dipole moments µ.

The resulting motion is conveniently viewed in a frame of reference rotating at the frequency
|Ω| about the z-axis, Ω = −Ωẑ. This system is labeled by (x′ , y′ , z′). This means Eq. 9) is simply
transformed into

dM′

dt
= γM′ ×Beff (10)

where Beff is the effective magnetic field and is given by

Beff = B+
Ω
γ

(11)

If we choose the rotating coordinate system to rotate at the Larmor frequency Ω = −ω0ẑ, the spins
will look stationary if the magnetic field is B = B0ẑ, since Beff = 0. If we add an RF-field oscillating
at frequency ω0 with the magnetic component B1 = b1 (x̂cosω0t − ŷ sinω0t) = b1x̂

′, the effective
magnetic field will be Beff = B+Ω/γ = B0 +B1 +Ω/γ = b1x̂

′ . Hence,

dM′

dt
= γM′ × b1x̂

′ (12)

Therefore, in the rotating coordinate system, the dipole or the magnetization will precess around
b1x̂
′ with a frequency of γb1 ≡ ω1. This can be utilized to bring the magnetization from the

equilibrium value to the transverse plane, e.g. by a so-called π/2-pulse, achieved by keeping
the RF pulse on for the appropriate amount of time τ , i.e., τω1 = π/2 . Other flip angles θ ≡ ω1τ

are also used frequently. After the RF pulse is turned off, the magnetization will continue to
precess around B0 in the laboratory frame, and the associated time-dependent magnetic flux can
be measured by the emf generated in nearby coils. This is the MR signal.
Note that if B1 is not exactly on resonance, e.g. B1 = b1(x̂cosωrft − ŷ sinωrft) with ωrf = ω0 − δω,
the effective magnetic field in the frame rotating with B1 (i.e. Ω = −ωrfẑ) is

Beff = B+Ω/γ = B0 +B1 +Ω/γ = B0ẑ+ b1x̂
′ − (ω0 − δω)/γ ẑ = b1x̂

′ + δω/γ ẑ. (13)

Remember we choose the rotating system precisely such that B1 = b1x̂
′ (in general some combina-

tion of x̂′ and ŷ′ defined by a phase φ).

Relaxation The generated magnetization will thereafter decay towards equilibrium again via
its interactions with the environment. Two processes are involved, the return of the transverse
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magnetization to 0 and of the longitudinal magnetization to M0: these are termed transverse and
longitudinal relaxation, respectively.
Longitudinal relaxation involves the reestablishment of Mz to the Boltzmann equilibrium distribu-
tion. This means that the proton spins will exchange energy with the surrounding “lattice” causing
M to approach M0 which is parallel to B0. Affecting only Mz, the rate of longitudinal relaxation is
phenomenologically modelled by assuming it to be proportional to the difference Mz(t)−M0 with
a time constant T1. See Fig. 3a.
Transverse relaxation involves the decoherence of the individual spins driven by inhomogeneities
in the field due to local atomic and nuclear effects. This means that individual protons precess
at slightly different rates and the signal decays because the component of M orthogonal to B0

decreases as the individual moments loose phase coherence with an associated time constant called
T2. See Fig. 2 and Fig. 3b. We have in general T1 ≥ T2, and for MRI of biological tissues, typically
T1 (hundreds of ms) is substantially larger than T2 (tens of ms).
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Figure 3: a) Longitudinal relaxation causes recovery of the longitudinal (z) component of mag-
netization (from blue to red) toward M0 with an exponential time constant T1. b) Transverse
relaxation causes shortening of the transverse component of magnetization (from blue to red),
with an exponential time-constant T2.

Bloch Equations To more fully describe the dynamics of the magnetisation we have to incorporate
the two times T1 and T2 into our previous equation of motion Eq. (9). This is the phenomenological
Bloch equation, and is given in the rotating frame by

dM
dt

= γM×Beff −R2(Mxx̂+My ŷ)−R1(Mz −M0)ẑ, (14)

where R2 and R1 are given by 1/T2 and 1/T1 respectively (and we dropped the primes signifying
the rotating system).
It is instructive to consider the solution in the absence of RF pulses. In the lab system we then have

dMx

dt
= −γMyB0 −R2Mx

dMy

dt
= −γMxB0 −R2My (15)

dMz

dt
= −R1(Mz −M0)

It proves convenient to define the complex transverse magnetization given by

M+ = Mx + iMy , (16)
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in terms of which Eqs. (15) becomes two decoupled equations

dM+

dt
= −iω0M+ −R2M+ (17)

dMz

dt
= −R1(Mz −M0) (18)

with the solution

M+(t) = M+(0)e−t/T2e−iω0t (19)

Mz(t) = Mz(0)e−t/T1 + (Mz −M0)e−t/T1 (20)

For a short π/2 at t = 0, M+(0) = iM0.

Spatial Encoding Magnetic field gradients can also be applied in addition to the static magnetic
field to encode the signal spatially and be processed to generate images, e.g. corresponding to
slices through the tissue. The gradients are generated by three orthogonal gradient coils in the
scanner and produce a linearly varying magnetic field, G in the (x,y,z) direction

G = ∇Bz. (21)

Magnetic fields are additive which means the total magnetic field experienced by the protons is
given by

Bz(r) = B0 +G · r. (22)

Combining this with the Larmor frequency relation ω = γB yields

ω(r) = ω0 +γG · r. (23)

For example, with G along ẑ, this means when an RF pulse Brf(t) is applied with a narrow band
∆f of frequencies around the Larmor frequency, the only protons to be resonantly excited will be
those within a narrow slice of thickness ∆z ≃ 2π∆f /γGz. Spins further off resonance will not be
affected to any substantial degree.

To go from measuring signals to an actual image we have to introduce k-space and the Fourier
transformation. To make things simpler assume 1D (G→ Gx, say), as the results can be generalized
to three dimensions. Neglecting relaxation, the MR signal is proportional to the spatial integral
over the transverse magnetization in Eq. 16,

S(t) =
∫

dxM+(x, t) =
∫

dxe−iω(x)tM+(x,0), (24)

where we assumed t≪ T2 and used Eq. (19) for general B along ẑ. Writing ω(x) as

ω(x) = ω0 +γGxx (25)

this yields (after demodulation, i.e. removing e−iω0t)

S(t) =
∫

dxe−iGxγtM+(x,0) (26)

or
S(k) =

∫
dxe−ikrM+(x,0) (27)
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where k = Gγt. This means the signal is the Fourier transform of M+(r,0)! Using the inverse
Fourier transform

M+(x,0) =
∫

dk
2π

e−ikxS(k). (28)

we have our MRI image, typically depicted as |M+(x,0). Note that it requires us to sample the
signal for multiple k-values, which here happens automatically as time proceeds. If we precede
the application of gradients by a π/2 pulse, we can make M+(r,0) ∝ ρ. If we wait some time, we
can also impart dependence on the relaxation times T1 and T2. Many other types of contrast can
be generated by careful design of the pulse sequence.

Discrete sampling In practice we sample the signal at discrete time points over a finite time
iterval. For example, N points with discrete sampling frequency 1/∆t results in measurement only
at discrete wave-vectors km = mγGx∆t = m∆k. So a discrete inverse Fourier transform is applied

M+(x) ≃ 1
N

∑
m

eikmxS(km). (29)

The resulting function is periodic with period 2π/∆k ≡ L, and L is called field-of-view (FOV).
Due to maximal resolution in reconstructed M+ (due to maximal k), and the need to render
on a computer, we only reconstruct M+(x) at discrete x, typically xn = n∆x = nL/N . Note that
∆x∆k = 2π/N .

Page 6 of 6


