Quinn, A. J., Ede, F. V., Brookes, M. J., Heideman, S. G., Nowak, M., Seedat, Z. A.
, Vidaurre, D., Zich, C., Nobre, A. C. & Woolrich, M. W. (2019).
Unpacking Transient Event Dynamics in Electrophysiological Power Spectra.
Brain Topography,
32(6), 1020-1034.
https://doi.org/10.1007/s10548-019-00745-5
IC, M., DM, F., WC, K.
, D, V., L, T., J, H.-L., MA, G., DA, L. & JA, B. (2018).
Transient visual pathway critical for normal development of primate grasping behavior. Proceedings of the National Academy of Sciences,
115(6), 1364-1369.
https://doi.org/10.1073/pnas.1717016115
R, B.
, D, V., AJ, Q., R, A., O, P. J., S, J. & M, W. (2018).
Transient spectral events in resting state MEG predict individual time-frequency task responses. bioRxiv.
https://doi.org/10.1101/419374
Higgins, C., van Es, M. W. J., Quinn, A. J.
, Vidaurre, D. & Woolrich, M. W. (2022).
The relationship between frequency content and representational dynamics in the decoding of neurophysiological data.
NeuroImage,
260, Article 119462.
https://doi.org/10.1016/j.neuroimage.2022.119462
Karapanagiotidis, T.
, Vidaurre, D., Quinn, A. J., Vatansever, D., Poerio, G. L., Turnbull, A., Ho, N. S. P., Leech, R., Bernhardt, B. C., Jefferies, E., Margulies, D. S., Nichols, T. E., Woolrich, M. W. & Smallwood, J. (2020).
The psychological correlates of distinct neural states occurring during wakeful rest.
Scientific Reports,
10(1), Article 21121.
https://doi.org/10.1038/s41598-020-77336-z
P, S., T, A.
, D, V., JD, T., S, F., A, C., SJ, C. & AD, E. (2018).
The network properties of the brain at the time of normal birth support the acquisition of language processing. bioRxiv.
https://doi.org/10.1101/282673
AJ, Q.
, D, V., R, A., R, B., AC, N. & MW, W. (2018).
Task-Evoked Dynamic Network Analysis Through Hidden Markov Modeling. Frontiers in Neuroscience,
12(AUG), Article 603.
https://doi.org/10.3389/fnins.2018.00603
Vidaurre, D., Woolrich, M. W., Winkler, A. M., Karapanagiotidis, T., Smallwood, J. & Nichols, T. E. (2018).
Stable between-subject statistical inference from unstable within-subject functional connectivity estimates.
Human Brain Mapping,
40(4), 1234-1243.
https://doi.org/10.1002/hbm.24442
D, V., MW, W., AM, W., T, K., J, S. & TE, N. (2018).
Stable between-subject statistical inference from unstable within-subject functional connectivity estimates. bioRxiv.
https://doi.org/10.1101/268151
J, H., S, B., A, S., M, W.
, D, V. & E, F. (2019).
Spontaneous network activity accounts for variability in stimulus-induced gamma responses. bioRxiv.
https://doi.org/10.1101/381236
D, V., LT, H., AJ, Q., BAE, H., MJ, B., AC, N. & MW, W. (2018).
Spontaneous cortical activity transiently organises into frequency specific phase-coupling networks. Nature Communications,
9(1), Article 2987.
https://doi.org/10.1038/s41467-018-05316-z
Vidaurre, D., Hunt, L. T., Quinn, A. J., Hunt, B. A. E., Brookes, M. J., Nobre, A. C. & Woolrich, M. W. (2017).
Spontaneous cortical activity transiently organises into frequency specific phase-coupling networks. bioRxiv.
https://doi.org/10.1101/150607
Vidaurre, D., Quinn, A. J., Baker, A. P., Dupret, D., Tejero-Cantero, A. & Woolrich, M. W. (2016).
Spectrally resolved fast transient brain states in electrophysiological data.
NeuroImage,
126, 81-95.
https://doi.org/10.1016/j.neuroimage.2015.11.047
Higgins, C.
, Vidaurre, D., Kolling, N., Liu, Y., Behrens, T. & Woolrich, M. (2022).
Spatiotemporally resolved multivariate pattern analysis for M/EEG.
Human Brain Mapping,
43(10), 3062-3085.
https://doi.org/10.1002/hbm.25835
Higgins, C., Liu, Y.
, Vidaurre, D., Kurth-Nelson, Z., Dolan, R., Behrens, T. & Woolrich, M. (2021).
Replay bursts in humans coincide with activation of the default mode and parietal alpha networks.
Neuron,
109(5), 882-893.e7.
https://doi.org/10.1016/j.neuron.2020.12.007
Gohil, C., Huang, R., Roberts, E., van Es, M. W. J., Quinn, A. J.
, Vidaurre, D. & Woolrich, M. W. (2024).
osl-dynamics, a toolbox for modeling fast dynamic brain activity.
eLife,
12, Article RP91949.
https://doi.org/10.7554/eLife.91949
Winkler, A. M., Webster, M. A.
, Vidaurre, D., Nichols, T. E. & Smith, S. M. (2015).
Multi-level block permutation.
NeuroImage,
123, 253-268.
https://doi.org/10.1016/j.neuroimage.2015.05.092
Pervaiz, U.
, Vidaurre, D., Gohil, C., Smith, S. M. & Woolrich, M. W. (2022).
Multi-dynamic modelling reveals strongly time-varying resting fMRI correlations.
Medical Image Analysis,
77, Article 102366.
https://doi.org/10.1016/j.media.2022.102366
C, Z., MW, W., R, B.
, D, V., J, S., EL, H., L, J., S, B., AJ, Q. & CJ, S. (2018).
Motor learning shapes temporal activity in human sensorimotor cortex. bioRxiv.
https://doi.org/10.1101/345421
Van Schependom, J.
, Vidaurre, D., Costers, L., Sjøgård, M., Sima, D. M., Smeets, D., D'hooghe, M. B., D'haeseleer, M., Deco, G., Wens, V., De Tiège, X., Goldman, S., Woolrich, M. & Nagels, G. (2021).
Increased brain atrophy and lesion load is associated with stronger lower alpha MEG power in multiple sclerosis patients.
NeuroImage: Clinical,
30, Article 102632.
https://doi.org/10.1016/j.nicl.2021.102632
F, A.-A., M, J., NK, B., JLR, A., L, G., G, D., S, S., S, J., M, H.-F., E, V., SM, S.
& Vidaurre Henche, D. (2017).
Image Processing and Quality Control for the first 10,000 Brain Imaging Datasets from UK Biobank. bioRxiv.
https://doi.org/10.1101/130385
Alfaro-Almagro, F., Jenkinson, M., Bangerter, N. K., Andersson, J. L. R., Griffanti, L., Douaud, G., Sotiropoulos, S. N., Jbabdi, S., Hernandez-Fernandez, M., Vallee, E.
, Vidaurre, D., Webster, M., McCarthy, P., Rorden, C., Daducci, A., Alexander, D. C., Zhang, H., Dragonu, I., Matthews, P. M. ... Smith, S. M. (2018).
Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank.
NeuroImage,
166, 400-424.
https://doi.org/10.1016/j.neuroimage.2017.10.034
Pineda-Pardo, J. A., Bruña, R., Woolrich, M., Marcos, A., Nobre, A. C., Maestú, F.
& Vidaurre, D. (2014).
Guiding functional connectivity estimation by structural connectivity in MEG: An application to discrimination of conditions of mild cognitive impairment.
NeuroImage,
101, 765-777.
https://doi.org/10.1016/j.neuroimage.2014.08.002
Smith, S. M.
, Vidaurre, D., Beckmann, C. F., Glasser, M. F., Jenkinson, M., Miller, K. L., Nichols, T. E., Robinson, E. C., Salimi-Khorshidi, G., Woolrich, M. W., Barch, D. M., Uǧurbil, K. & Van Essen, D. C. (2013).
Functional connectomics from resting-state fMRI.
Trends in Cognitive Sciences,
17(12), 666-682.
https://doi.org/10.1016/j.tics.2013.09.016
Salvan, P., Lazari, A.
, Vidaurre, D., Mandino, F., Johansen-Berg, H. & Grandjean, J. (2021).
Frequency modulation of entorhinal cortex neuronal activity drives distinct frequency-dependent states of brain-wide dynamics.
Cell Reports,
37(5), Article 109954.
https://doi.org/10.1016/j.celrep.2021.109954
GC, ON., P, T.
, D, V., L, L., MW, W. & MJ, B. (2018).
Dynamics of large-scale electrophysiological networks: A technical review. NeuroImage,
180(B), 559-576.
https://doi.org/10.1016/j.neuroimage.2017.10.003
Stevner, A. B. A., Vidaurre, D., Cabral, J., Rapuano, K., Nielsen, S. F. V., Tagliazucchi, E., Laufs, H.
, Vuust, P., Deco, G., Woolrich, M. W., Van Someren, E.
& Kringelbach, M. L. (2019).
Discovery of key whole-brain transitions and dynamics during human wakefulness and non-REM sleep.
Nature Communications,
10(1), Article 1035.
https://doi.org/10.1038/s41467-019-08934-3
D, V., R, A., R, B., AJ, Q., F, A.-A., SM, S. & MW, W. (2018).
Discovering dynamic brain networks from big data in rest and task. NeuroImage,
180(B), 646-656.
https://doi.org/10.1016/j.neuroimage.2017.06.077
Sharma, A.
, Vidaurre, D., Vesper, J., Schnitzler, A. & Florin, E. (2021).
Differential dopaminergic modulation of spontaneous cortico–subthalamic activity in parkinson’s disease.
eLife,
10, Article e66057.
https://doi.org/10.7554/eLife.66057
Ahrends, C., Stevner, A., Pervaiz, U.
, Kringelbach, M. L., Vuust, P., Woolrich, M. W.
& Vidaurre, D. (2022).
Data and model considerations for estimating time-varying functional connectivity in fMRI.
NeuroImage,
252, Article 119026.
https://doi.org/10.1016/j.neuroimage.2022.119026
Cabral, J., Vidaurre, D., Marques, P., Magalhães, R., Silva Moreira, P., Miguel Soares, J., Deco, G., Sousa, N.
& Kringelbach, M. L. (2017).
Cognitive performance in healthy older adults relates to spontaneous switching between states of functional connectivity during rest.
Scientific Reports,
7(1), 5135. Article 5135.
https://doi.org/10.1038/s41598-017-05425-7
Vidaurre, D., Van Gerven, M. A. J., Bielza, C., Larrañaga, P. & Heskes, T. (2013).
Bayesian sparse partial least squares.
Neural Computation,
25(12), 3318-3339.
https://doi.org/10.1162/NECO_a_00524
Khawaldeh, S., Tinkhauser, G., Torrecillos, F., He, S., Foltynie, T., Limousin, P., Zrinzo, L., Oswal, A., Quinn, A. J.
, Vidaurre, D., Tan, H., Litvak, V., Kühn, A., Woolrich, M. & Brown, P. (2022).
Balance between competing spectral states in subthalamic nucleus is linked to motor impairment in Parkinson's disease.
Brain,
145(1), 237-250.
https://doi.org/10.1093/brain/awab264
Smith, S. M., Nichols, T. E.
, Vidaurre, D., Winkler, A. M., Behrens, T. E. J., Glasser, M. F., Ugurbil, K., Barch, D. M., Van Essen, D. C. & Miller, K. L. (2015).
A positive-negative mode of population covariation links brain connectivity, demographics and behavior.
Nature Neuroscience,
18(11), 1565-1567.
https://doi.org/10.1038/nn.4125
Vidaurre, D., Rodríguez, E. E., Bielza, C., Larrañaga, P. & Rudomin, P. (2012).
A new feature extraction method for signal classification applied to cord dorsum potential detection.
Journal of Neural Engineering,
9(5), Article 056009.
https://doi.org/10.1088/1741-2560/9/5/056009